
LOAD AVS: A Horizontally Scalable
Decentralized Hot Cache Storage Network

draft v2.2

(load://0x943a06973895dd4c7ebe7b0a397ac40fd1094df2805cd967aa7cb7ec05c02e12/0)

April 10, 2025

 Rani Elhusseini Benjamin Brandall Mykyta Rykov

rani@decent.land ben@decent.land nik@hns.is

1. Abstract

In this paper we describe LOAD AVS: a horizontally scalable decentralized storage network for temporary data. LOAD
AVS aims to serve as a scalable hot cache layer in the EVM ecosystem, built on top of EigenLayer's AVS infrastructure.
The network achieves this through a partition-based architecture where independent segments operate in parallel, each
maintaining a sovereign state while contributing to overall network capacity. At its core, LOAD AVS utilizes pBFT
consensus paired with Proof of Custody for continuous data replication verification. LOAD AVS implements dynamic
pricing derived from global NVMe SSD market rates, ensuring competitive and realistic onchain storage costs. By
leveraging EigenLayer's economic security stack and implementing a standalone parallel partition mechanism, LOAD AVS
provides a cost-efficient, load-balanced, and scalable temporary storage solution, providing an alternative to slow,
expensive storage layers available for EVM developers today.

2. Introduction

Storage systems form the backbone of modern digital
infrastructure, with an increasing demand for decentralized
solutions that can match the performance and reliability of
centralized systems while offering enhanced security and
availability guarantees. Decentralized data storage, often
underpinned by or otherwise compatible with blockchain
technology, represents a paradigm shift from traditional
centralized architectures. These systems enable users to
store, access, and share files in a distributed manner,
fundamentally improving security, availability, and
scalability in data handling. Unlike centralized storage,
where data management relies on single-point
infrastructure, decentralized storage distributes data across
independently incentivized network nodes, eliminating
third-party dependencies for data management and
retention.

The evolution of decentralized storage systems can be
traced through several significant developments. Early
implementations in peer-to-peer networks demonstrated
the feasibility of distributed data management, with
BitTorrent (2001) establishing foundational principles for
scalable peer-to-peer file sharing [1]. The InterPlanetary
File System (IPFS) later introduced content-addressed
storage, while academic implementations like Freenet
advanced the theoretical framework for distributed storage
systems [2].

Contemporary decentralized storage systems can be
categorized into two primary architectures. Traditional
decentralized systems, including distributed file systems like
HDFS, GlusterFS, and Ceph Storage, focus on data
distribution and redundancy mechanisms. These systems
operate alongside peer-to-peer networks such as
BitTorrent, eDonkey, and Gnutella, which primarily address
file sharing without incorporating economic incentives or
cryptographic proofs.

https://gateway.load.rs/bundle/0x943a06973895dd4c7ebe7b0a397ac40fd1094df2805cd967aa7cb7ec05c02e12/0

The emergence of blockchain technology has catalyzed
innovation in decentralized storage, introducing economic
models and enhanced security guarantees. Networks like
Filecoin implement proof-of-replication systems [3], while
platforms such as Storj and Sia have established onchain
storage marketplaces. Notable innovations include

Arweave's permanent storage through endowment
mechanisms [4] and Ocean Protocol's tokenized data
marketplace approach [5].

3. Problem

3.1 General

The general problem the crypto industry faces at the time
of writing is the lack of a cost efficient, decentralized and
secure data storage solution that is adjacent to the EVM
tech stack. Many solutions have emerged while focusing
mainly on small data needs, serving for improving the L2
experience, such as EIP-4844 [5] blobs and non-Ethereum
data availability solutions, while the general problem of
EVM-adjacent and cost-effective storage for arbitrarily
large data remains unsolved.

Today's decentralized storage landscape shows a clear gap
between demand and viable solutions:

1. Cost inefficiency: While solutions such as EthStorage
[6] tackle this problem with strong decentralization and
data replication, they remain cost-prohibitive for mass
adoption. For example, storing 1 GB of data on EthStorage
costs 4.43 ETH yearly.

2. Limited scope: Current solutions primarily focus on
Layer 2 data needs and small-scale storage requirements.
This narrow focus leaves a significant gap for applications
requiring larger data storage capacities.

3. Technical integration: Most existing solutions lack
seamless integration with data storage industry standards,
creating additional complexity and overhead for developers
and users.

This combination of high costs, limited scope, and
integration challenges creates a significant barrier to the
widespread adoption of decentralized storage solutions in
the EVM ecosystem, particularly for applications requiring
substantial storage capacity.

3.2 Load Network Adjacent

Load Network [7] in its design will be pruning history,
keeping only 1 month history (last 2,592,000 blocks) due to

balancing high performance with the network's hardware
constraints. Although pruned, the history will not be lost as
it will be permanently archived on Arweave. Since the
network history data archived on Arweave will lose its data
availability guarantees once the Load Network layer 1
network prunes it, there will be a need for a data storage
solution that offers data availability guarantees of large data
chunks for the pruned Load Network data.

This positions LOAD AVS as a complementary layer that
extends Load Network’s data availability guarantees beyond
the network's pruning horizon, while maintaining the
performance benefits of the original pruning design.
LOAD AVS fits as an effective and aligned solution to
extend the longevity of Load Network data availability after
pruning, on demand, and for specified period.

3.3 General utility for any blockchain

3.3.1 Improved time-flexible DA with hot cache

LOAD AVS can store data pruned from blockchain nodes,
ensuring that the high-throughput DA [31] needed by
high-bandwidth networks remains available for a longer
period with strong availability guarantees. This ensures that
data is accessible and provable in a way that is both secure
and economically incentivized by EigenLayer.

3.3.2 Economic security

By building on EigenLayer, LOAD AVS leverages the
economic security provided by stETH holders who stake
assets to secure the layer. This eliminates the reliance on a
chain’s native network token price, greatly improving the
robustness of the security models of new chains and
mitigating the risk of price manipulation attacks.

3.3.4 Complement to Arweave

LOAD AVS does not replace Arweave as the permanent
archive but serves as a complementary layer. While
Arweave guarantees permanence, LOAD AVS guarantees
the availability and security of recent data for real-time
validation, acting as a fast-access storage layer until the data
is no longer required for immediate use.

4. Protocol design

4.1 Design principles

4.1.1 KISS (Keep it simple, stupid)
LOAD AVS protocol design and implementation follow
the KISS principle, focusing on minimalism, simplicity,
efficiency, and modularity. The main node implementation
of LOAD AVS - described in section 4.3 - will be written
in Rust to leverage the language's built-in features such as
type and memory safety, concurrency, and high
performance

4.1.2 Strong and low-volatility incentives
Unlike other decentralized data storage protocols that base
their incentives and pricing on volatile protocol tokens,
LOAD AVS takes a different approach by pricing storage in
US dollars. The price will be derived from real-time
worldwide average pricing of hard storage (e.g., SSDs,
NVMe, etc.). As LOAD AVS aims for hot cache storage,
there's no need to adjust the incentives design for
years-long storage market changes, which are expected to
keep evolving at a high rate. Focusing on short-term
storage and real-time, USD-based pricing and incentives
allows LOAD AVS to easily adapt to storage market-related
changes (hardware pricing) and the global market pricing
base (the state of USD dominance).

4.2 LOAD AVS as an Actively Validated
Service (AVS)

4.2.1 Introduction to EigenLayer Actively Validated
Services (AVS)

4.2.1.1 Actively Validated Services (AVS)

An Actively Validated Service (AVS) is a service built
externally to EigenLayer [6] that requires active validation
by a set of Operators. An AVS deploys its service manager
to interact with EigenLayer core contracts, enabling
Operator registration to Operator Sets, slashing, and
rewards distribution. Once registered, Operators agree to
run the AVS's off-chain code. The LOAD AVS network is
an AVS built upon these principles.

4.2.2.2 AVS Operator

An entity that registers an Operator address on EigenLayer
to receive Staker delegations and operate AVS
infrastructure. These Operators (equivalent to LOAD AVS
Nodes in LOAD AVS terminology) allocate their delegated

stake across Operator Sets created by their chosen AVS - in
this case, the LOAD AVS Network.

4.2.2.3 AVS Operator Set

A distinct grouping of Operators, established by an AVS,
that secures specific service tasks using allocated staked
assets. These assets may be exclusively reserved for
securing that particular set.

4.2.2.4 Staker

An individual address that supplies assets directly to
EigenLayer. This address can be an EOA wallet or a smart
contract controlled by either an individual or institution.

4.2.2.5 Restaker

An entity that restakes Native or LST ETH within the
EigenLayer protocol.

4.3 LOAD AVS Node Components And
Design

4.3.1 LOAD AVS Heap

LOAD AVS Heap is a P2P data sharing network that
enables user communication with LOAD AVS network
operators.

Data transmission over Ethereum [7] is cost-inefficient and
not scalable, which is one of the main reasons for building
LOAD AVS. Additionally, communicating through data
references on the cloud compromises the network's
decentralization at its data ingress point.

To address these issues, LOAD AVS Heap serves as a P2P
distributed file system, providing a cost-efficient (free)
content-addressable method for data ingress
communication with LOAD AVS operators.

LOAD AVS Heap achieves these goals by operating as a
private IPFS network that exclusively handles LOAD AVS
P2P data communication. LOAD AVS Heap has a data
retention period of 48 hours, which keeps the data pinned
in the P2P data sharing protocol for 2 LOAD AVS network
epochs.

4.3.2 LOAD AVS Optimistic Gateway
LOAD AVS Gateway is an optimistic cache for data that
passes through data ingress voting (pBFT consensus over
data acceptance in the network). Users and developers can
use the gateway to optimistically access LOAD AVS-stored
data without running an operator or needing to connect
with the specific operator gateway storing their data.
Gateways can implement their own content management

policies, complying with their jurisdiction's requirements,
data retention rules, and optimistic caching latency targets.

4.3.3 LOAD AVS Decentralized Gateways

LOAD AVS decentralized gateways function as
partition-specific data serving endpoints, individually
operated by partition operators. Each gateway serves
objects contained within its operator's partition.

While gateway operation is optional, operators are
incentivized to run gateways through Proof of Data
Serving (LOAD) rewards, detailed in section 8.3. This
incentive structure promotes distributed data availability
[31], efficient object retrieval across the network, and less
reliance on the LOAD AVS Optimistic Gateway.

 4.3.4 LOAD AVS Smart Contracts

A set of smart contracts required to form an AVS based on
EigenLayer AVS design specifications [8]. These handle
tasks processing, governance, consensus management,
slashing, and rewards distribution.

4.3.5 LOAD AVS Operators

LOAD AVS Operators are LOAD AVS Nodes running
off-chain AVS components that form the core logic of the
network. They are responsible for data storage, proof
submission, and voting.

4.3.6 LOAD AVS Aggregator

After LOAD AVS Nodes provide BLS-signed responses to
storage requests (AVS tasks), the LOAD AVS Aggregator
combines the operators' multiple signatures into a single
aggregated BLS signature. It then submits this signature
onchain by interacting with the AVS smart contracts.

4.4 LOAD AVS Data Retention

4.4.1 Data retention periods

LOAD AVS network data retention periods are measured
in seconds. Time durations used throughout this paper
refer to the following conversions:

● 1 day = 86,400 seconds
● 1 month = 31 days = 2,678,400 seconds
● 1 year = 365.25 days = 31,557,600 seconds

4.4.2 Maximum storage period
For protocol to be flexible against movements in the
market of storage mediums, maximum storage duration has
to be introduced, avoiding the need for dynamic
endowment adjustment of prices on current storage deals
based on volatility in storage medium markets. This
limitation cannot be too low, as it would decrease the
usability of LOAD AVS and its applications for various use
cases.

As the storage medium market is relatively stable, we set
this parameter to 1 year (365 days) - a reasonable timeframe
to assume no major surges in storage medium prices will
occur.

4.4.3 Minimum data retention duration
The minimum data retention period for all operators is set
to 30 days. When users submit a data storage transaction,
they will be charged for 30 days regardless of whether they
plan to store data for less time. This minimum storage
period ensures protocol integrity against potential abuse
(DDoS) and protects operators' resources

5. LOAD AVS Partitions

5.1 Partitions and operators

LOAD AVS Network implements horizontal scaling, where
the network's full ledger consists of partitions [9], each
responsible for its assigned data. Each partition contains
1-4 operators, with each operator allocating resources of
500GB SSD NVMe, resulting in partition sizes of 500-2000
GB. Therefore, data stored across the LOAD AVS
Network and assigned to a single partition will have 1-4
replicas.

where:

 = number of replicas for data piece

 = number of active operators in partition

A partition is considered active as long as there is at least
one active operator (hence, one replica per object).

Partitions are capped at 2 TB maximum total size. Scaling
network storage ingress requires adding more partitions to
the network

5.2 LOAD AVS Network Maximum Capacity

The LOAD AVS Network's maximum capacity is
determined by the total number of partitions multiplied by
the maximum partition size (2 TB). Available storage
ingress capacity represents the difference between the
network's maximum capacity and currently used storage
space.

Maximum Network Capacity ():

where:

 = Network maximum capacity

 = Total number of partitions

 = Maximum partition size (2 TB)

Available Storage Capacity ():

 = -

where:

 = Available storage ingress capacity

 = Total used storage space

When the network reaches 70% of maximum storage
capacity, it will automatically create a new partition and
increase the network capacity to make zero-space scenarios
unlikely and prevent periods of network unusability.

5.3 Partition Bucket-Object storage

5.3.1 LOAD AVS Buckets

To store data (objects) on the LOAD AVS Network, users
must first create a bucket in their preferred partition. The
partition choice typically depends on several factors:
operator policies, geographic location, available data
capacity, and terms offered by partition operators - all of
which the bucket inherits.

This design implements a flat structure of buckets [10]. The
object storage system uses this flat structure along with
metadata and unique identifiers for each object, making it
efficient to locate specific objects among potentially billions
of stored items.

5.3.2 Bucket Structure
Each bucket on LOAD AVS has unique identifiers that
define its identity and location within the network. Buckets
contain unique names, access control (managed by the
bucket creator/admin), location address (partition ID), and
object placeholders. Bucket management occurs onchain
through the AVS smart contracts.

struct Bucket {
 bytes32 name; // Unique name of the bucket (auto-assigned as bytes32)
 uint32 type; // bucket type identifier (1 or 2)
 uint32 fab_size; // > 0 when type == 1 (represent max bytes)
 uint32 credits; // unused credits
 address renter; // Creator/admin of the bucket
 address[] admins; // List of admins who can manage access
 uint32 location; // Location on LOAD AVS Network (partition id)
 mapping(string => Object) objects; // Placeholder for objects in the bucket
}

function generateUniqueBucketName() internal view returns (bytes32) {
 return keccak256(
 abi.encodePacked(
 msg.sender,
 block.timestamp,
 block.number,
 tx.gasprice
)
);
}

Bucket names are 32-byte arrays, which translate to 66 characters in hexadecimal string representation (including the 0x prefix).

5.3.3 Bucket Types

Buckets [11] have different types that are immutably
determined at bucket creation.

5.3.3.1 Fixed Allocation Bucket (FAB)

FAB Buckets (type 1) function like renting fixed partition
space, regardless of actual bucket usage (number of objects
stored). Users rent storage space in the partition where the
bucket is allocated. FAB's maximum size must be less than
or equal to the partition size.

5.3.3.2 Ghost Buckets

Ghost Buckets (type 2) are prunable after 6 epochs (~12
hours) of inactivity (when they have no objects). Operators
are incentivized to prune these buckets after reaching the
pruning epoch [12] to free up space for active data egress.
Ghost Buckets have dynamic sizing and operate on a
pay-as-you-go model.

5.3.4 Bucket Deletion

Buckets are deleted under two conditions:

5.3.4.1 Owner-Initiated Deletion When a bucket owner
explicitly requests deletion, triggering:

● Immediate bucket removal
● Credit refund of remaining balance to renter

5.3.4.2 Zero-Operator Deletion When a partition reaches
zero active operators:

● All partition buckets are automatically deleted
● Full refund of delegated credits to respective

renters

5.3.4 LOAD AVS Objects
LOAD AVS Objects are stored within user buckets.
Minimal Object metadata must exist onchain as operators
will download the actual Object data from the LOAD AVS
Heap and vote on its correct data seeding and structure:

struct Object {
 bytes32 hid; // Heap ID in bytes32 format
 uint40 timestamp; // Creation timestamp (40 bits = until year 2078)
 address owner; // Object creator/owner
}

The Object data structure on LOAD AVS Heap is defined as:

#[derive(
 Debug, Default, Serialize, Deserialize, PartialEq, BorshSerialize,

BorshDeserialize, Clone,
)]

pub struct Tag {
 pub name: String,
 pub value: String,
}

#[derive(
 Debug, Default, Serialize, Deserialize, PartialEq, BorshSerialize,

BorshDeserialize, Clone,
)]
pub struct ObjectMetadata {
 pub content_type: String, // MIME type of the content
 pub size: u64, // Size in bytes
 pub created_at: u32, // Ethereum Blockheight
 pub tags: Option<Vec<Tag>>, // Custom metadata tags
}

#[derive(
 Debug, Default, Serialize, Deserialize, PartialEq, BorshSerialize,

BorshDeserialize, Clone,
)]
pub struct Object {
 pub name: String, // Object name/key
 pub bucket_name: String, // Reference to parent bucket
 pub metadata: ObjectMetadata, // Current object metadata
 pub data_location: u32, // Bucket Partition location
 pub data: Vec<u8>, // raw object data
}

5.3.5 HTTP API
Object data within buckets is accessible through an HTTP
API [13] (via LOAD AVS Gateways), following standard
bucket-object storage API conventions [14][15].

6. Storage Economics and Pricing Model

6.1 LOAD AVS Payment Tokens

The LOAD AVS Network processes payments using
USD-pegged cryptocurrencies (e.g., USDC [16], USDT
[17]). The network's accepted USD stablecoins (which may
vary over time) are used for user deposits (storage credits)
and storage payments (rewards [18]) to operators.

6.2 LOAD AVS Deposits

The deposit system reduces gas costs by enabling storage
deal smart contracts to track balances locally, rather than
receiving protocol-accepted stablecoins [19] each time a
user initiates a storage deal.

6.3 Price Discovery Mechanism

The network implements a dynamic pricing model based
on hardware costs and operational parameters. Storage
costs are derived from real-time SSD (NVMe) market
prices through web3 smart contract oracles [20]. All
payments and calculations are performed in USD-pegged
LOAD AVS supported stablecoins to ensure price stability
and predictability.

Let Ω represent the network's state space, where:

Ω = {χ, α, r, ι}
where:

χ ∈ ℕ: Drive capacity (GB)

α ∈ ℝ+: Hardware cost (USD)

r ∈ [1,4]: Replication factor

ι ∈ ℝ+: Incentive rate (USD/GB/epoch)

6.3.1 Oracle Integration

The system employs a permissionless price update
mechanism with the following constraints:

● Update frequency: τ blocks (≈ 1 hour)
● Price aggregation: USD-denominated
● Data sources: web3 decentralized oracle network

aggregating retail hardware prices

The hardware cost oracle feed F(t) at time t is defined as:

where is the spot hardware price at time

6.4 Economic Model

6.4.1 External Incentives

The protocol implements an inflation-based incentive
mechanism ι (in LOAD tokens), distributed per GB-epoch
to maintain competitive pricing while ensuring operator
sustainability. This mechanism allows the network to:

● Subsidize operator costs beyond upload fees
● Maintain competitive pricing compared to services

with fewer replicas
● Incentivize network usage through GB/epoch

rewards

6.4.2 Storage Price Function

The fundamental pricing function P: ℝ+ × ℝ+ → ℝ+ is
defined as:

Subject to:

s > 0: Storage size in GB

t ≥ tmin: Storage duration

τ = 31,557,600: Target period in seconds (1 year)

r ≤ 4: Maximum replication factor

6.5 Network Economic Constraints

The network operates under the following economic
constraints:

 (Non-negative pricing)

 (Network capacity constraint)

where:

s_i: Individual storage allocations

N: Number of active partitions

6.6 Storage Cost Simulation

Given the pricing formula defined in section 6.4.2, we
simulate the storage costs using the following parameters:

α = $50 (SSD drive cost)

χ = 500 GB (Drive capacity)

r = 4.0 (Replication factor)

τ = 31,557,600 (Target period in seconds)

t = 2,592,000 (Time unit in seconds)

ι = 0.001 (Incentive rate USD/GB/month, paid in
LOAD tokens)

The simulation demonstrates the linear relationship
between storage size and monthly cost. For a given storage
size s, the monthly cost follows our pricing function P(s,t).
Key observations from the simulation:

● Cost for 1GB storage per month: $0.0307
● This includes 4.0x replication for data reliability

The graph below illustrates the relationship between
storage size and monthly cost, demonstrating the linear
scaling of our pricing model while maintaining cost
efficiency through hardware resource optimization and
replication factor considerations.

This simulation validates that our pricing model achieves
both economic sustainability and market competitiveness
while ensuring data reliability through replication [21].

7. Operator Economics and Hardware
Lifecycle

7.1 Initial Investment Analysis (4 Operator
Nodes, 1 Partition)

Hardware Costs:

● 4 × 500GB NVMe SSDs @ $50 each = $200
initial investment

● Supporting infrastructure costs not included (AVS
staking, cloud, compute, network, onchain fees,
etc.)

7.2 Revenue Calculation

Using our pricing formula P(s,t) defined in section 6.4.2
with full capacity utilization:

Monthly Revenue per Node = P(500, t) = $11.695 per
500GB

Total Monthly Revenue (4 nodes) = $46.78

7.2.1 Break-even Analysis

Break-even Period = Initial Investment / Monthly Revenue

$200 / $46.78 = 4.28 months

7.2.2 SSD Longevity Analysis [22]
7.2.2.1. TBW (Terabytes Written) Calculations:

Typical NVMe SSD (500GB) specifications:

● TBW rating: ~400 TBW
● DWPD (Drive Writes Per Day): 0.4
● Daily Write Limit = 500GB × 0.4 = 200GB per

day

7.2.2.2. Write Amplification Factors:

Daily writes considering factors:

● User data writes
● Replication overhead (4x)
● Garbage collection (~1.1x)
● System metadata (~1.05x)

Total Write Amplification = Base writes × 4 × 1.1 × 1.05

7.2.2.3. Estimated Lifespan Calculation:`

Given 400 TBW rating:

Maximum Data Written = 400,000 GB

Daily Write Load (with amplification) = 200GB × 4 × 1.1
× 1.05 = 924GB

Theoretical Lifespan = 400,000 / 924 = 433 days (~1.19
years)

7.3 ROI Projections

7.3.1 Key Economic Indicators

7.3.1.1. Initial 14.5-month cycle (before first SSD
replacement):

● Total Revenue: $888.82
● Initial Investment: $200
● Net Profit before replacement: $688.82
● ROI: 344.41%

7.3.1.2. Risk Factors:

● Network utilization variations
● Hardware failure before TBW limit
● Market price fluctuations
● Network incentive adjustments
● Ethereum network fees
● AVS staked assets associated risks
● Oracle attacks [23]

The analysis suggests that operators can achieve ROI
within ~4.28 months under optimal conditions, with
substantial profit potential over the hardware lifecycle.
However, operators should plan for hardware replacement
at approximately 14.5-month intervals and maintain
reserves for unexpected replacements.

8. Cryptographic storage proofs

To establish a mechanism providing us with reasonable
assumptions about honest operation of storage operators,
mentioned operators will be periodically challenged by The
Challenger to submit a proof of work [24]. Specifically, at
regular intervals T, every operator must provide a proof
comprising the hash of the partition, the operator's address,
and a nonce. The computational effort for generating this
proof is constrained to approximately T/3 seconds on an
average CPU, assuming a statistically average system at the
time.

The allocation of T/3 time serves multiple purposes:

1. Energy and computational efficiency. Limiting
the computation time conserves both computing
resources and energy consumption.

2. Equity among hardware capabilities. By
restricting the proof generation time, advantages
held by faster CPUs or specialized hardware such
as ASICs [25] are mitigated. Even if an ASIC can
compute the hash in less time (such as T/5), all
operators are still required to submit their proofs
within the T interval.

3. Incentivization of cost-effective hardware
usage. This constraint incentivizes the use of less
expensive CPUs, promoting the utilization of
superior storage mediums over high-performance
compute units.

This protocol ensures that, with the most cost-effective
configuration, operators must retain the data on local
storage devices for at least one-third of the designated time
period. Relying on network storage and generating hashes
during data retrieval would significantly reduce the time
available to produce the proof. Such a reduction limits the
ability of dishonest operators to consistently generate valid
proofs within the required timeframe, as it would
necessitate excessive bandwidth usage. Consequently, the
most viable strategy for operators is to maintain the data
on local drives.

Even if an operator attempts to delete the data after
computing the hash, this approach is suboptimal.
Re-downloading the entire partition at each interval would
demand substantial bandwidth, which is more efficiently
allocated to transferring new data to the network, giving
new fees and incentive to operators doing it.

In the pessimistic scenario where an operator successfully
removes the data during the two-thirds of the period when
proof computation is not required, the advantage of such
dishonest behavior remains ambiguous. Assuming the

availability of free or high-speed bandwidth, the space freed
on the drive must eventually be replenished with the
deleted data after the two-thirds period elapses. Given that
re-downloading a potentially large partition is
time-consuming, the window during which the operator
can access the stored data remains minimal, thereby
limiting the practicality of such a storage strategy.

Storage proof verification cannot be efficiently performed
via external observers (i.e. onchain smart contracts) without
direct dataset access, as obtaining dataset hashes would be
impossible. The responsibility of verifying storage proofs
lies with other operators, using majority vote to determine
proof validity via pBFT [5] consensus. The system
implements an optimistic model where only invalid proofs
trigger voting, while valid proofs pass without vote. The
Challenger aggregates operator proofs and raises disputes
when invalid proofs are detected.

8.1 Incentives of participation in storage proof
system

Incentives need to be in place to ensure that operators are
motivated to participate in the validation/submission
process:

● Incentives for validating proofs. A portion of
the slashed penalties from invalid proofs should be
distributed among validators who agree on the
invalidity of a proof.

● Disincentives for False Positive Votes.
Operators who incorrectly vote to invalidate a
proof, without reaching a majority consensus, must
incur penalties. This discourages dishonest
attempts to undermine valid proofs. After each
epoch with valid Proof of Storage voting, the
system distributes object bucket rewards
(stablecoins) to partition operators on a pro-rata
basis.

8.2 Proof-optimized hashing algorithm: Proof
of Probabilistic Chunk-Sampling Hash
(PoPCSH)

Usual hashing algorithms must account for every bit of
information to generate the final output of a hash function.
While this characteristic is crucial in use cases of hashing
functions where hash is responsible for data integrity, it
may be not the best choice when it comes down to proving
storage of a large blob of data via PoW.

Not only is taking full data computationally suboptimal, it
also forces operators to store all the content of the

partition, which may affect operation of storage nodes in
problematic regions.
LOAD AVS uses a hashing function that would consider
only ρ percentage of the data (ρ = 25%). This way,
operators have the ability to generate proof of storage
having just ρ of data, although the time to generate such
proof increases to keep storing the whole partition the
most optimal strategy.

The hashing function is multi-round and stateful: Picking
small chunks scattered among whole data, updating state of
hash and thus next chunk to hash.

Described hashing function can be represented in
pseudocode as follows:

8.3 Simplified Proof of Data Sharing (SPoDS)

SPoDS represents the third, optional challenge performed
by the Challenger on operators running LOAD AVS
Gateways alongside their Operator Nodes. The
"Simplified" designation reflects the straightforward
proving mechanism: random checks by the Challenger
verify correct data serving from LOAD AVS Gateways.

8.3.1 Incentives

Gateway operators receive LOAD tokens as incentive for
maintaining data availability. This creates an additional
revenue stream beyond basic storage rewards.

8.3.2 Future Development

Future versions of this paper will expand SPoDS
specifications and detail upgrades to the full PoDS system.

9. AVS Storage Visualized

9.1 Bucket Creation

The storage process begins when a renter (which can be a
user, AI agent, smart contract, DePIN node, or other
entity) creates a bucket on the LOAD AVS smart contract.
Two bucket types are available:

● Fixed Allocation Bucket (FAB): Pre-allocated
fixed storage space

● Ghost Bucket: Dynamic storage allocation with
automatic pruning capability

9.2 Object Submission

Renters construct and submit valid objects to the LOAD
AVS Network through one of two pathways:

● via the Sequencer
● Direct interaction with LOAD AVS smart

contracts

9.3 Storage Workflow Validation Process

LOAD AVS Operators perform a pBFT consensus vote to
validate:

● Object data structure validity
● Correct data seeding
● Sufficient renter credit balance
● Available network storage capacity

The Aggregator collects signatures from operators and
aggregates them using BLS aggregation. When a response
passes the pBFT quorum threshold (67%), the aggregator

posts the aggregated response to the AVS smart contract,
optimizing onchain interactions.

9.4 Capacity Management

If the LOAD AVS Network reaches maximum partition
capacity across all partitions:

● New object submissions are automatically rejected
● A new partition is created
● Three new operators are allowed to join the new

partition
● Normal validation process resumes

9.5 Gateway Caching

Upon successful pBFT consensus:
● LOAD AVS Gateway optimistically caches the

object data
● Object becomes immediately available for its

specified duration
● Object is added to the next epoch queue

9.6 Verification and Challenges

After one epoch:
● The Challenger initiates off-chain Proof of Storage

challenges (PoPCSH type)
● Operators of the bucket's partition must respond
● Failed challenges trigger onchain dispute resolution
● Operators face penalties if unable to provide valid

proof

10. Use Cases

The LOAD AVS Network's architecture enables diverse
applications across multiple domains. Here are the key use
cases that demonstrate its utility:

10.1 Data Lake Infrastructure

LOAD AVS Network serves as an open, decentralized data
lake [26] architecture facilitating permissionless data access,
contribution, and sharing. Organizations can build
collaborative data ecosystems with support for both
structured and unstructured data storage, powering
data-heavy cloud computing protocols (e.g. onchain
serverless functions, onchain AWS Lambda)

10.2 Smart Contract Interoperability

Entry and exit points managed through AVS Ethereum
mainnet contracts enable permissionless cross-contract
communication. This architecture supports automated data
storage and retrieval while facilitating trustless
contract-to-contract interactions.

10.3 AI Agent Infrastructure

Serving web3-aligned AI agents [27], both onchain and
hybrid, LOAD AVS provides reliable data storage for AI
training and inference. The network's architecture ensures
high-performance data retrieval with permissionless access
for autonomous systems.

10.4 DePIN Support

LOAD AVS functions as a decentralized storage backbone
for DePIN [28] networks, enabling efficient data
management for IoT devices. The network's scalable
architecture supports real-time data ingestion and retrieval,
making it ideal for sensor data storage and management.

10.5 Web Content Hosting

The network supports static website hosting with
decentralized content delivery. This provides a reliable and
cost-effective alternative to traditional hosting solutions
while maintaining high availability through operator
replication.

10.6 Decentralized File Sharing

As a decentralized alternative to centralized storage
systems, LOAD AVS enables secure peer-to-peer file
sharing with support for various file types and
sizes[1][2][3]. Data availability is maintained through
systematic replication across operators.

10.7 EIP-4844 data longevity

LOAD AVS can be used as a way to extend the lifetime of
EIP-4844 blobs [29], powering archives and applications
that depend on historical data. Both EIP-4844 on EVM
chains and blob implementations in alternative data
availability [31] layers prune data after a short period of
time, pushing users to deploy their own storage solutions.

10.8 EIP-4444 storage

EIP-4444 [30] proposes that historical chain data will be
pruned to keep node hardware requirements low. LOAD
AVS can serve as decentralized data storage for chains that
implement this, ensuring historical data is retrievable and
hardware requirements can be kept low.

Also, high-throughput L2 chains that implement pruned
nodes [ref] need to maintain time-flexible DA [31] and
historical data storage after pruning their own on-node
storage.

11. References

[1] Cohen, B. (2003). "Incentives build robustness in
BitTorrent." Workshop on Economics of Peer-to-Peer
systems, 6, 68-72.
https://bittorrent.org/bittorrentecon.pdf

[2] Benet, J. (2014). "IPFS - Content Addressed,
Versioned, P2P File System." arXiv preprint
arXiv:1407.3561.
https://arxiv.org/abs/1407.3561

[3] Protocol Labs. (2017). "Filecoin: A Decentralized
Storage Network." Technical Whitepaper.
https://filecoin.io/filecoin.pdf

[4] Williams, S., et al. (2019). "Arweave: A Protocol for
Economically Sustainable Information Permanence."
Technical Whitepaper.
https://www.arweave.org/whitepaper.pdf

[5] Miguel C., Barbara L. (1999). “Practical Byzantine
Fault Tolerance”
https://www.pmg.csail.mit.edu/papers/osdi99.pdf

[6] Wang, G., et al. (2024). "EigenLayer: Restaked
Security for Smart Contracts." Technical Whitepaper.
https://docs.eigenlayer.xyz/eigenlayer/overview
/whitepaper

[7] Buterin, V. (2013). "Ethereum: A Next-Generation
Smart Contract and Decentralized Application Platform."
https://ethereum.org/en/whitepaper

[8] EigenLabs. (2023). "EigenLayer: The Restaking
Primitive for Ethereum." EigenLayer Documentation.
https://docs.eigenlayer.xyz/eigenlayer/overview
/

[9] "Disk Partitioning." Wikipedia.
https://en.wikipedia.org/wiki/Disk_partitioning

[10] "Object Storage." Wikipedia.
https://en.wikipedia.org/wiki/Object_stora
ge

[11] Oracle Cloud Infrastructure. (2023). "Managing
Buckets." Oracle Cloud Documentation.
https://docs.oracle.com/iaas/Content/Object/Tas
ks/managingbuckets.htm

[12] "Epoch (computing)." Wikipedia.
https://en.wikipedia.org/wiki/Epoch_(computing)

[13] MDN Web Docs. (2023). "HTTP Overview."
Mozilla Developer Network.
https://developer.mozilla.org/en-US/docs/Web/HT
TP/Overview

[14] "RESTful API Design - Object Storage."
https://cloud.google.com/storage/docs/json_api

[15] "Object Storage API Reference."
https://docs.aws.amazon.com/AmazonS3/latest/API
/Welcome.html

[16] Circle Internet Financial. (2018). "USDC: A
Price-Stable Cryptocurrency for Global Payments."
Circle Documentation.
https://www.circle.com/en/usdc

[17] Tether Operations Limited. (2014). "Tether: Digital
Money for a Digital Age." Tether Documentation.
https://tether.to/en/transparency

[18] EigenLabs. (2023). "EigenLayer Rewards Claiming
Overview." EigenLayer Documentation.
https://docs.eigenlayer.xyz/eigenlayer/rewards-
claiming/rewards-claiming-overview

[19] Coinbase. (2023). "What is a stablecoin?" Coinbase
Learn.
https://www.coinbase.com/learn/crypto-basics/wh
at-is-a-stablecoin

[20] Chainlink. (2023). "Price Feed Oracle Networks:
Hardware Pricing Integration."
https://docs.chain.link/data-feeds

[21] LOAD AVS Storage Replication in Distributed
Systems.
https://en.wikipedia.org/wiki/Replication_(comp
uting)#Storage_replication

[22] Microsoft Tech Community. (2023). "Understanding
SSD Endurance: Drive Writes Per Day (DWPD),
Terabytes Written (TBW)." Microsoft Documentation.
https://techcommunity.microsoft.com/blog/fileca
b/understanding-ssd-endurance-drive-writes-per-
day-dwpd-terabytes-written-tbw-and-/426024

[23] Chainlink. (2023). "Market Manipulation vs. Oracle
Exploits: Understanding DeFi Security Risks." Chainlink
Education Hub.

https://cloud.google.com/storage/docs/json_api/v1/how-tos/performance

https://chain.link/education-hub/market-manipul
ation-vs-oracle-exploits

[24] Dwork, C., & Naor, M. (1992). "Pricing via
Processing or Combatting Junk Mail." Annual
International Cryptology Conference, CRYPTO '92.
(Proof of Work)
https://link.springer.com/chapter/10.1007/3-540
-48071-4_10

[25] "Application-Specific Integrated Circuit (ASIC)."
Wikipedia.
https://en.wikipedia.org/wiki/Application-speci
fic_integrated_circuit

[26] Google Cloud. (2023). "What is a data lake?"
Google Cloud Documentation.
https://cloud.google.com/learn/what-is-a-data-l
ake

[27] Walters, S., Gao, S., Nerd, S., Da, F., Williams, W.,
Meng, T.C., Han, H., He, F., Zhang, A., Wu, M., Shen,
T., Hu, M., & Yan, J. (2025). "Eliza: A Web3 friendly AI
Agent Operating System." arXiv:2501.06781.
https://arxiv.org/abs/2501.06781

[28] Lin, Z., Wang, T., Shi, L., Zhang, S., & Cao, B.
(2024). "Decentralized Physical Infrastructure Network
(DePIN): Challenges and Opportunities."
arXiv:2406.02239.
https://arxiv.org/html/2406.02239v1

[29] Buterin, V., Feist, D., Loerakker, D., Kadianakis, G.,
Garnett, M., Taiwo, M., & Dietrichs, A. (2022).
"EIP-4844: Shard Blob Transactions." Ethereum
Improvement Proposals.
https://eips.ethereum.org/EIPS/eip-4844

[30] Kadianakis, G., Garnett, M. (lightclient), & Stokes,
A. (2021). "EIP-4444: Bound Historical Data in
Execution Clients." Ethereum Improvement Proposals.
https://eips.ethereum.org/EIPS/eip-4444

[31] Chaudhuri, A., Basak, S., Kiraly, C., Ryajov, D., &
Bautista-Gomez, L. (2024). "On the Design of Ethereum
Data Availability Sampling: A Comprehensive
Simulation Study." arXiv:2407.18085.
https://arxiv.org/abs/2407.18085

	load-avs-whitepaper-v2-2-1
	1. Abstract
	2. Introduction
	3. Problem
	3.1 General
	3.2 Load Network Adjacent
	3.3 General utility for any blockchain
	3.3.1 Improved time-flexible DA with hot cache
	3.3.2 Economic security
	3.3.4 Complement to Arweave

	4. Protocol design
	4.1 Design principles
	4.1.1 KISS (Keep it simple, stupid)
	4.1.2 Strong and low-volatility incentives

	4.2 LOAD AVS as an Actively Validated Service (AVS)
	4.2.1 Introduction to EigenLayer Actively Validated Services (AVS)
	4.2.1.1 Actively Validated Services (AVS)

	An Actively Validated Service (AVS) is a service built externally to EigenLayer [6] that requires active validation by a set of Operators. An AVS deploys its service manager to interact with EigenLayer core contracts, enabling Operator registration to Operator Sets, slashing, and rewards distribution. Once registered, Operators agree to run the AVS's off-chain code. The LOAD AVS network is an AVS built upon these principles.
	4.2.2.2 AVS Operator
	4.2.2.3 AVS Operator Set
	4.2.2.4 Staker
	4.2.2.5 Restaker

	4.3 LOAD AVS Node Components And Design
	4.3.1 LOAD AVS Heap
	4.3.2 LOAD AVS Optimistic Gateway
	4.3.3 LOAD AVS Decentralized Gateways
	 4.3.4 LOAD AVS Smart Contracts
	4.3.5 LOAD AVS Operators
	4.3.6 LOAD AVS Aggregator

	4.4 LOAD AVS Data Retention
	4.4.1 Data retention periods
	4.4.2 Maximum storage period
	4.4.3 Minimum data retention duration

	5. LOAD AVS Partitions
	5.1 Partitions and operators
	
	5.2 LOAD AVS Network Maximum Capacity
	5.3 Partition Bucket-Object storage
	5.3.1 LOAD AVS Buckets
	5.3.2 Bucket Structure
	5.3.3 Bucket Types
	5.3.3.1 Fixed Allocation Bucket (FAB)
	5.3.3.2 Ghost Buckets

	5.3.4 Bucket Deletion
	5.3.4.1 Owner-Initiated Deletion When a bucket owner explicitly requests deletion, triggering:
	5.3.4.2 Zero-Operator Deletion When a partition reaches zero active operators:

	5.3.4 LOAD AVS Objects
	
	5.3.5 HTTP API

	6. Storage Economics and Pricing Model
	6.1 LOAD AVS Payment Tokens
	6.2 LOAD AVS Deposits
	6.3 Price Discovery Mechanism
	6.3.1 Oracle Integration

	6.4 Economic Model
	6.4.1 External Incentives
	6.4.2 Storage Price Function

	6.5 Network Economic Constraints
	6.6 Storage Cost Simulation

	7. Operator Economics and Hardware Lifecycle
	7.1 Initial Investment Analysis (4 Operator Nodes, 1 Partition)
	7.2 Revenue Calculation
	7.2.1 Break-even Analysis
	7.2.2 SSD Longevity Analysis [22]7.2.2.1. TBW (Terabytes Written) Calculations:
	7.2.2.2. Write Amplification Factors:
	7.2.2.3. Estimated Lifespan Calculation:`

	7.3 ROI Projections
	7.3.1 Key Economic Indicators
	7.3.1.1. Initial 14.5-month cycle (before first SSD replacement):
	7.3.1.2. Risk Factors:

	8. Cryptographic storage proofs
	8.1 Incentives of participation in storage proof system
	8.2 Proof-optimized hashing algorithm: Proof of Probabilistic Chunk-Sampling Hash (PoPCSH)
	8.3 Simplified Proof of Data Sharing (SPoDS)
	8.3.1 Incentives
	8.3.2 Future Development

	9. AVS Storage Visualized
	9.1 Bucket Creation
	9.2 Object Submission
	9.3 Storage Workflow Validation Process
	9.4 Capacity Management
	9.5 Gateway Caching
	9.6 Verification and Challenges

	2791ba7176c737a78e1dcebb75823972a1b22beed99c5bce6bc95a3d030b9d88.pdf
	Page 1

	load-avs-whitepaper-v2-2-1
	10. Use Cases
	10.1 Data Lake Infrastructure
	10.2 Smart Contract Interoperability
	10.3 AI Agent Infrastructure
	10.4 DePIN Support
	10.5 Web Content Hosting
	10.6 Decentralized File Sharing
	10.7 EIP-4844 data longevity
	10.8 EIP-4444 storage

	
	11. References

